Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Iran J Sci Technol Trans A Sci ; 46(5): 1327-1338, 2022.
Article in English | MEDLINE | ID: covidwho-2027750

ABSTRACT

The COVID-19 pandemic has crippled the world population. Our present work aims to formulate a model to analyze the change in normal health conditions due to COVID-19 infection. For this purpose, we have collected data of seven parameters, namely, age, systolic pressure (SP), diastolic paper (DP), respiratory distress (RD), fasting blood sugar (FBS), cholesterol (CHL), and insomnia (INS) of 156 persons of Birnagar municipality, Nadia, India; before and after COVID-19 infection. Ultimately, using an adaptive neuro-fuzzy inference system (ANFIS), we have formulated our desired model, a Takagi-Sugeno fuzzy inference system. Further, with the help of this model, we have established one's change in health condition with age due to COVID-19 infection. Finally, we have derived that older people are more affected by COVID-19 infection than younger people.

2.
Eur Phys J Spec Top ; : 1-11, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-1927663

ABSTRACT

During the first and second quarters of the year 2020, most of the countries had implemented complete or partial lockdown policies to slow down the transmission of the COVID-19. To cultivate the effect of lockdown due to COVID-19 on public health, we have collected the data of six primary parameters, namely systolic blood pressure, diastolic blood pressure, fasting blood sugar, insomnia, cholesterol, and respiratory distress of 200 randomly chosen people from a municipality region of West Bengal, India before and after lockdown. With the help of these data and Adaptive Neuro-Fuzzy Inference System (ANFIS), we have formulated a model that has established that lockdown due to COVID-19 has negligible impacts on the individuals with better health condition but has significant effects on the health conditions to those populations who have poor health.

3.
Journal of applied mathematics & computing ; : 1-24, 2022.
Article in English | EuropePMC | ID: covidwho-1624147

ABSTRACT

This paper proposes and analyses a new fractional-order SIR type epidemic model with a saturated treatment function. The detailed dynamics of the corresponding system, including the equilibrium points and their existence and uniqueness, uniform-boundedness, and stability of the solutions are studied. The threshold parameter, basic reproduction number of the system which determines the disease dynamics is derived, and the condition of occurrence of backward bifurcation is also determined. Some numerical works are conducted to validate our analytical results for the commensurate fractional-order system. Hopf bifurcations for the fractional-order system are studied by taking the order of the fractional differential as a bifurcation parameter.

4.
J Appl Math Comput ; 68(6): 4051-4074, 2022.
Article in English | MEDLINE | ID: covidwho-1620376

ABSTRACT

This paper proposes and analyses a new fractional-order SIR type epidemic model with a saturated treatment function. The detailed dynamics of the corresponding system, including the equilibrium points and their existence and uniqueness, uniform-boundedness, and stability of the solutions are studied. The threshold parameter, basic reproduction number of the system which determines the disease dynamics is derived, and the condition of occurrence of backward bifurcation is also determined. Some numerical works are conducted to validate our analytical results for the commensurate fractional-order system. Hopf bifurcations for the fractional-order system are studied by taking the order of the fractional differential as a bifurcation parameter.

5.
Chaos Solitons Fractals ; 136: 109889, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-245484

ABSTRACT

As there is no vaccination and proper medicine for treatment, the recent pandemic caused by COVID-19 has drawn attention to the strategies of quarantine and other governmental measures, like lockdown, media coverage on social isolation, and improvement of public hygiene, etc to control the disease. The mathematical model can help when these intervention measures are the best strategies for disease control as well as how they might affect the disease dynamics. Motivated by this, in this article, we have formulated a mathematical model introducing a quarantine class and governmental intervention measures to mitigate disease transmission. We study a thorough dynamical behavior of the model in terms of the basic reproduction number. Further, we perform the sensitivity analysis of the essential reproduction number and found that reducing the contact of exposed and susceptible humans is the most critical factor in achieving disease control. To lessen the infected individuals as well as to minimize the cost of implementing government control measures, we formulate an optimal control problem, and optimal control is determined. Finally, we forecast a short-term trend of COVID-19 for the three highly affected states, Maharashtra, Delhi, and Tamil Nadu, in India, and it suggests that the first two states need further monitoring of control measures to reduce the contact of exposed and susceptible humans.

SELECTION OF CITATIONS
SEARCH DETAIL